
Online Exam — Analysis (WBMA012-05)

Tuesday 26 January 2021, 8.30h–11.30h CET (plus 30 minutes for uploading)

University of Groningen

Instructions

1. All answers need to be accompanied with an explanation or a calculation: only
answering “yes”, “no”, or “42” is not sufficient.

2. If p is the number of marks then the exam grade is G = 1 + p/10.

3. Write both your name and student number on the answer sheets!

4. This exam comes in two versions. Both versions consist of six problems of equal
difficulty.

Make version 1 if your student number is odd.

Make version 2 if your student number is even.

For example, if your student number is 1277456, which is even, then you have to
make version 2.

5. Save your work as a single PDF file and submit it via this dedicated Nestor page.
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Version 1: odd student numbers only!

Problem 1 (5 + 5 + 5 = 15 points)

(a) Assume that B ⊂ R is nonempty and bounded above. Assume that A is nonempty
and A ⊂ B. Show that A is bounded above and supA ≤ supB.

(b) Assume that the sets U, V ⊂ R are nonempty and bounded above. In addition,
assume that U ∩ V is nonempty. Use part (a) to show that

sup(U ∩ V ) ≤ min{supU, supV }.

(c) Give an example of sets U and V for which the inequality in part (b) is strict.

Problem 2 (5 + 5 + 5 = 15 points)

Give an example of each of the following, or argue that such a request is impossible:

(a) A sequence (xn) such that limxn = 0 and xn = 1 for infinitely many n ∈ N.

(b) A divergent sequence (xn) for which every subsequence (xnk
) converges.

(c) A sequence (xn) such that 0 ≤ xn ≤ 1/n2 for all n ∈ N and
∑∞

n=1(−1)nxn diverges.

Problem 3 (5 + 5 + 5 = 15 points)

Consider a set K ⊂ R that satisfies the following properties:

(i) K is nonempty and compact;

(ii) for all x ∈ K there exists εx > 0 such that K ∩ Vεx(x) = {x}.

Prove the following statements:

(a) The set A = {0, 1} satisfies both properties (i) and (ii).

(b) The set B = [0, 1] satisfies property (i), but not property (ii).

(c) Any set K that satisfies both properties (i) and (ii) is finite.

Problem 4 (10 + 5 = 15 points)

Let f : R → R be differentiable and assume that the derivative is bounded, i.e., there
exists M ≥ 0 such that |f ′(x)| ≤ M for all x ∈ R. Moreover, assume that g : R → R is
uniformly continuous on R.

(a) Prove that the function h given by h(x) = f(g(x)) is uniformly continuous on R.

(b) Is the function h still uniformly continuous on R when f does not have a bounded
derivative? If so, give a proof; otherwise, give a counterexample.

— Page 2 of 13 —



Problem 5 (3 + 6 + 6 = 15 points)

Let g : [0, 1]→ R be a continuous function and consider the sequence (fn) given by

fn : [0, 1]→ R, fn(x) = xng(x).

Prove the following statements:

(a) The sequence (fn) converges pointwise to f : [0, 1]→ R where

f(x) =

{
0 if 0 ≤ x < 1,

g(1) if x = 1.

(b) The convergence fn → f is uniform on [0, b] for all 0 < b < 1.

(c) If the convergence fn → f is uniform on [0, 1], then g(1) = 0.

Problem 6 (3 + 12 = 15 points)

(a) Argue that the function f(x) = 1/x is integrable on [1, 2].

(b) Use the partition P = {(k + n)/n : k = 0, . . . , n} to prove the following inequality:

ln(2) ≤ 1

n
+

1

n+ 1
+ · · ·+ 1

2n− 1
for all n ∈ N.

End of version 1 (90 points)
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Version 2: even student numbers only!

Problem 1 (5 + 5 + 5 = 15 points)

(a) Assume that B ⊂ R is nonempty and bounded below. Assume that A is nonempty
and A ⊂ B. Show that A is bounded below and inf A ≥ inf B.

(b) Assume that the sets U, V ⊂ R are nonempty and bounded below. In addition,
assume that U ∩ V is nonempty. Use part (a) to show that

inf(U ∩ V ) ≥ max{inf U, inf V }.

(c) Give an example of sets U and V for which the inequality in part (b) is strict.

Problem 2 (5 + 5 + 5 = 15 points)

Give an example of each of the following, or argue that such a request is impossible:

(a) A sequence (xn) such that limxn = 1 and xn = 0 for infinitely many n ∈ N.

(b) A bounded sequence (xn) for which every subsequence (xnk
) diverges.

(c) A sequence (xn) such that 0 ≤ xn ≤ 1/n2 for all n ∈ N and
∑∞

n=1(−1)nxn diverges.

Problem 3 (5 + 5 + 5 = 15 points)

Consider a set K ⊂ R that satisfies the following properties:

(i) K is nonempty and compact;

(ii) for all x ∈ K there exists εx > 0 such that K ∩ Vεx(x) = {x}.

Prove the following statements:

(a) The set A = {0, 1} satisfies both properties (i) and (ii).

(b) The set B = [0, 1] satisfies property (i), but not property (ii).

(c) Any set K that satisfies both properties (i) and (ii) is finite.

Problem 4 (10 + 5 = 15 points)

Let f : R → R be differentiable and assume that the derivative is bounded, i.e., there
exists M ≥ 0 such that |f ′(x)| ≤ M for all x ∈ R. Moreover, assume that g : R → R is
uniformly continuous on R.

(a) Prove that the function h given by h(x) = f(g(x)) is uniformly continuous on R.

(b) Is the function h still uniformly continuous on R when g is not uniformly continuous?
If so, give a proof; otherwise, give a counterexample.
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Problem 5 (3 + 6 + 6 = 15 points)

Let g : [0, 1]→ R be a continuous function and consider the sequence (fn) given by

fn : [0, 1]→ R, fn(x) = (1− x)ng(x).

Prove the following statements:

(a) The sequence (fn) converges pointwise to f : [0, 1]→ R where

f(x) =

{
g(0) if x = 0,

0 if 0 < x ≤ 1.

(b) The convergence fn → f is uniform on [a, 1] for all 0 < a < 1.

(c) If the convergence fn → f is uniform on [0, 1], then g(0) = 0.

Problem 6 (3 + 12 = 15 points)

(a) Argue that the function f(x) = 1/(1 + x) is integrable on [0, 1].

(b) Use the partition P = {k/n : k = 0, . . . , n} to prove the following inequality:

1

n+ 1
+

1

n+ 2
+ · · ·+ 1

2n
≤ ln(2) for all n ∈ N.

End of version 2 (90 points)
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Solution of problem 1, version 1 (5 + 5 + 5 = 15 points)

(a) If a ∈ A, then a ∈ B. Since supB is an upper bound for B we have that a ≤ supB.
Since a ∈ A is arbitrary, it follows that supB is also an upper bound for A.
(3 points)

By definition of least upper bound it then follows that supA ≤ supB.
(2 points)

(b) We have that U ∩ V ⊂ U . By part (a) it follows that sup(U ∩ V ) ≤ supU . By a
similar argument it follows that sup(U ∩ V ) ≤ supV .
(3 points)

Without loss of generality we may assume that supU ≤ supV (otherwise, just inter-
change the roles of U and V ). Therefore, we obtain

sup(U ∩ V ) ≤ supU = min{supU, supV }.

(2 points)

(c) For U = {0, 1} and V = {0, 2} we have

supU = 1 and supV = 2,

which gives min{supU, supV } = 1. Since U ∩ V = {0} we have sup(U ∩ V ) = 0.
(5 points)

— Page 6 of 13 —



Solution of problem 1, version 2 (5 + 5 + 5 = 15 points)

(a) If a ∈ A, then a ∈ B. Since inf B is a lower bound for B we have that a ≥ supB.
Since a ∈ A is arbitrary, it follows that inf B is also a lower bound for A.
(3 points)

By definition of greatest lower bound it then follows that inf A ≥ inf B.
(2 points)

(b) We have that U ∩V ⊂ U . By part (a) it follows that inf(U ∩V ) ≥ inf U . By a similar
argument it follows that inf(U ∩ V ) ≥ inf V .
(3 points)

Without loss of generality we may assume that inf U ≤ inf V (otherwise, just inter-
change the roles of U and V ). Therefore, we obtain

inf(U ∩ V ) ≥ inf V = max{inf U, inf V }.

(2 points)

(c) For U = {−1, 0} and V = {−2, 0} we have

inf U = −1 and inf V = −2,

which gives max{inf U, inf V } = −1. Since U ∩ V = {0} we have inf(U ∩ V ) = 0.
(5 points)
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Solution of problem 2, version 1 (5 + 5 + 5 = 15 points)

(a) This request is impossible. Indeed, let ε = 1
2
. Then there exists N ∈ N such that

xn ∈ Vε(0) = (−1
2
, 1
2
) for all n ≥ N . So there can at most be finitely many n ∈ N for

which xn = 1. (Note: this argument works with any 0 < ε < 1.)
(5 points)

Alternative argument. If xn = 1 for infinitely many n ∈ N, then (xn) has a sub-
sequence converging to a different limit than the sequence itself. This contradicts the
theorem that states that all subsequences of a convergent sequence are convergent
and must have the same limit as the sequence itself.

(b) This request is impossible. Indeed, one possible subsequence is obtained by simply
taking the sequence itself (by choosing nk = k).
(5 points)

(c) This request is impossible. Indeed, we have that |(−1)nxn| ≤ 1/n2. Since
∑∞

n=1 1/n2

is a convergent series, the comparison test implies that the series
∑∞

n=1 |(−1)nxn|
converges and hence the series

∑∞
n=1(−1)nxn itself converges.

(5 points)

Solution of problem 2, version 2 (5 + 5 + 5 = 15 points)

(a) This request is impossible. Indeed, let ε = 1
2
. Then there exists N ∈ N such that

xn ∈ Vε(0) = (1
2
, 3
2
) for all n ≥ N . So there can at most be finitely many n ∈ N for

which xn = 0. (Note: this argument works with any 0 < ε < 1.)
(5 points)

(b) This request is impossible. Indeed, the Bolzano-Weierstrass Theorem guarantees the
existence of at least one convergent subsequence.
(5 points)

(c) This request is impossible. Indeed, we have that |(−1)nxn| ≤ 1/n2. Since
∑∞

n=1 1/n2

is a convergent series, the comparison test implies that the series
∑∞

n=1 |(−1)nxn|
converges and hence the series

∑∞
n=1(−1)nxn itself converges.

(5 points)

Remark. In part (c) one cannot use the Alternating Series Test because that theorem
would require that (xn) is decreasing: 0 ≤ xn+1 ≤ xn for all n ∈ N. This is not implied
by the given inequality 0 ≤ xn ≤ 1/n2. Indeed, the sequence (1, 0, 1

9
, 0, 1

25
, 0, 1

49
, 0, . . . )

satisfies the given inequality but is not decreasing.
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Solution of problem 3, version 1 and 2 (5 + 5 + 5 = 15 points)

(a) The set A is clearly nonempty as it contains two elements.
(1 point)

In addition, the set is compact, since in the lectures it has been shown that finite sets
are compact. Hence, the set A satisfies property (i).
(1 point)

For ε = 1
2

(in fact any 0 < ε ≤ 1 works) we have

Vε(0) ∩ A = (−1
2
, 1
2
) ∩ {0, 1} = {0}.

For the point a = 1 the reasoning is similar. This shows that the set A satisfies
property (ii).
(3 points)

(b) The set B is clearly nonempty as 0 ∈ B.
(1 point)

In addition, the set is compact, since in the lectures it has been shown that closed
and bounded intervals are compact. Hence, the set B satisfies property (i).
(1 point)

Method 1. Let ε > 0 be arbitrary. We have

Vε(0) ∩B = (−ε, ε) ∩ [0, 1] =

{
[0, 1] if ε ≥ 1

[0, ε) if ε < 1
.

This implies that for any ε > 0 we have Vε(0)∩B 6= {0}, which shows that the set B
does not satisfy property (ii).
(3 points)

Method 2. Note that x = 0 is a limit point of A. Indeed, the sequence xn = 1/n lies
in B and satisfies xn 6= 0 for all n while limxn = 0. By definition of a limit point we
then have that for each ε > 0 there exists y ∈ B such that y 6= 0 and y ∈ B ∩ Vε(0).
Therefore, the set B does not satisfy property (ii).
(3 points)

(c) The sets Vεx(x), where x ∈ K, form an open cover for K. Since K is assumed to be
compact, it follows that there exist finitely many points x1, . . . , xn ∈ K such that

K ⊂ Vεx1 (x1) ∪ · · · ∪ Vεxn (xn).

(3 points)

Since K ∩ Vεxi (xi) = {xi} for all i = 1, . . . , n we have that K ⊂ {x1, . . . , xn}, which
shows that K is a finite set.
(2 points)

Alternative argument. IfK is infinite, then the boundedness ofK implies the existence
of a limit point; this can be shown using a bisection argument as in the proof of the
Bolzano-Weierstrass Theorem. The closedness of K would then imply that this limit
point is contained in K. This is a direct contradiction with property (ii), which states
that no point of K is a limit point.
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Solution of problem 4, version 1 and 2 (10 + 5 = 15 points)

(a) If g(x) 6= g(y), then we may assume without loss of generality that g(x) < g(y). By
the Mean Value Theorem there exists c ∈ (g(x), g(y)) such that

f(g(x))− f(g(y)) = f ′(c)(g(x)− g(y)).

(3 points)

Taking absolute values and the boundedness assumption on f ′ gives

|f(g(x))− f(g(y))| = |f ′(c)| |g(x)− g(y)| ≤M |g(x)− g(y)|.

(1 point)

If g(x) = g(y), then the above inequality trivially holds.
(1 point)

Since g is assumed to be uniformly continuous on R it follows that for each ε > 0
there exists δ > 0 such that

|x− y| < δ ⇒ |g(x)− g(y)| < ε

M
.

(2 points)

Therefore, if |x− y| < δ, then

|h(x)− h(y)| = |f(g(x))− f(g(y))| ≤M |g(x)− g(y)| < M · ε
M

= ε.

This shows that h is also uniformly continuous on R.
(3 points)

(b) Version 1. No, without the assumption that the derivative of f is bounded, the
function h need not be uniformly continuous on R. A counter example is given by
f(x) = x2 and g(x) = x. Clearly, g is uniformly continuous, but f does not have a
bounded derivative. The function h(x) = f(g(x)) = x2 is not uniformly continuous
on R as has been shown in the lectures.
(5 points)

Version 2. No, without the assumption that g is uniformly continuous, the function h
need not be uniformly continuous on R. A counter example is given by f(x) = x and
g(x) = x2. It has been shown in the lectures that g is not uniformly continuous, but
f does have a bounded derivative. The function h(x) = f(g(x)) = x2 is not uniformly
continuous on R.
(5 points)

Remark. In part (b) a specific example of f and g must be given for which h is not
uniformly continuous. It is not possible to state in general that h will not be uniformly
continuous because we can find examples for which h in fact is uniformly continuous.
For version 1 we could take: f(x) = x2 and g(x) = 0 for which h(x) = 0 is clearly
uniformly continuous on R. For version 2 we could take f(x) = 0 and g(x) = x2.
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Solution of problem 5, version 1 (3 + 6 + 6 = 15 points)

(a) If 0 ≤ x < 1, then lim fn(x) = lim xng(x) = g(x) limxn = g(x) · 0 = 0.
(2 points)

If x = 1, then fn(x) = g(1) for all n so that lim fn(x) = g(1).
(1 point)

(b) Let 0 < b < 1 be arbitrary. The function g is continuous on the compact set [0, b]
and hence attains a maximum and a minimum. In particular, this implies that g is
bounded which means that there exists a constant M > 0 such that |g(x)| ≤ M for
all x ∈ [0, b].
(2 points)

Therefore, using that f(x) = 0 on [0, b], we obtain that

sup
x∈[0,b]

|fn(x)− f(x)| = sup
x∈[0,b]

|fn(x)| = sup
x∈[0,b]

xn|g(x)| ≤M sup
x∈[0,b]

xn = Mbn.

(2 points)

This implies that

lim

(
sup
x∈[0,b]

|fn(x)− f(x)|
)

= 0,

which means that fn → f uniformly on [0, b].
(2 points)

(c) Note that each function fn is continuous since it is a product of continuous functions.
If fn → f uniformly on [0, 1], then f is continuous as well.
(3 points)

If g(1) = 0, then f is identically zero and hence continuous. On the other hand, if
g(1) 6= 0, then f is not continuous. Indeed, for xn = 1− 1/n, we have lim f(xn) = 0,
whereas f(1) = g(1) 6= 0.
(3 points)

Therefore, we conclude that if fn → f uniformly on [0, 1], then g(1) = 0.

Remark. For version 2 the arguments are completely analogous to those given above for
version 1.
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Solution of problem 6, version 1 (3 + 12 = 15 points)

(a) Method 1. The function is decreasing and in the lectures it has been shown that
decreasing functions are integrable.
(3 points)

Method 2. The function is continuous and in the lectures it has been shown that
continous functions are integrable.
(3 points)

(b) Since for F (x) = ln(x) we have F ′(x) = 1/x, it follows by the Fundamental Theorem
of Calculus that ∫ 2

1

1

x
dx = ln(2)− ln(1) = ln(2).

(3 points)

Since f is decreasing it follows that

Mk := sup{f(x) : x ∈ [xk−1, xk]} = f(xk−1).

(3 points)

For the partition P = {(k + n)/n : k = 0, . . . , n} we thus get the following upper
sum

U(f, P ) =
n∑
k=1

Mk(xk − xk−1)

=
n∑
k=1

f(xk−1)(xk − xk−1)

=
n∑
k=1

n

k − 1 + n

(
k + n

n
− k − 1 + n

n

)
=

n∑
k=1

1

k − 1 + n
=

1

n
+

1

n+ 1
+ · · ·+ 1

2n− 1
.

(5 points)

Finally, since
∫ 2

1
f ≤ U(f, P ) for any partition P we obtain the desired inequality.

(1 point)
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Solution of problem 6, version 2 (3 + 12 = 15 points)

(a) Method 1. The function is decreasing and in the lectures it has been shown that
decreasing functions are integrable.
(3 points)

Method 2. The function is continuous and in the lectures it has been shown that
continous functions are integrable.
(3 points)

(b) Since for F (x) = ln(1 + x) we have F ′(x) = 1/(1 + x), it follows by the Fundamental
Theorem of Calculus that∫ 1

0

1

1 + x
dx = ln(2)− ln(1) = ln(2).

(3 points)

Since f is decreasing it follows that

mk := inf{f(x) : x ∈ [xk−1, xk]} = f(xk).

(3 points)

For the partition P = {k/n : k = 0, . . . , n} we thus get the following lower sum

L(f, P ) =
n∑
k=1

mk(xk − xk−1)

=
n∑
k=1

f(xk)(xk − xk−1)

=
n∑
k=1

1

1 + k/n

(
k

n
− k − 1

n

)
=

n∑
k=1

1

n+ k
=

1

n+ 1
+

1

n+ 2
+ · · ·+ 1

2n
.

(5 points)

Finally, since L(f, P ) ≤
∫ 1

0
f for any partition P we obtain the desired inequality.

(1 point)
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